Fall 2024

MTH642 Fluid Mechanics

Assignment No 1

Total Marks = 35

Due Date: 27th December 2024

DON'T MISS THESE: Important instructions before attempting the solution of this assignment:

- Listen the lectures and consult the recommended book for the clarification of concepts
- > Upload assignments properly through LMS, No Assignment will be accepted through email.
- > Write your ID on the top of your solution file.
- > Don't use colorful back grounds in your solution files.
- > Always send your solution in dox or docx file with proper accessible math type symbols.
- > You should remember that if we found the solution files of some students are same then we will reward zero marks to all those students.
- > Also remember that you are supposed to submit your assignment in Word format any other like scan images etc will not be accepted and we will given zero marks.

Question No 1:

Air whose density is 0.082 lbm/ft^3 enters the duct of an air conditioning system at a volume flow rate of $450 \text{ft}^3/\text{min}$. If the diameter of the duct is 16 inches, determine the velocity of the air at the duct inlet and the mass flow rate of air.

Question No 2:

A steady, three-dimensional velocity field is given by

$$\vec{V} = (0.657 + 1.73x + 0.948y + az)\hat{i} + (2.61 + cx + 1.91y + bz)\hat{j} + (-2.73x - 3.66y - 3.64z)\hat{k}$$

Calculate the constants *a*,*b*, *c* such that the flow field is irrotational.

Question No 3:

The continuity equation in cylindrical coordinates for steady flow is given by:

$$\frac{1}{r}\frac{\partial(ru_r)}{\partial r} + \frac{1}{r}\frac{\partial(u_{\theta})}{\partial \theta} + \frac{1}{r}\frac{\partial(u_z)}{\partial z} = 0$$

Write the primary dimensions of each additive term in the equation and verify that the equation is dimensionally homogeneous.

Marks=10

Marks=10

Marks=10

Question 4:

Using primary dimensions, verify that the Archimedes number is dimensionless. The Archimedes number is given by the formula:

$$Ar = \frac{\rho g L^3}{\mu^2}$$

Where:

- ρ is the density of the fluid
- *g* is the acceleration due to gravity
- *L* is a characteristic length
- μ is the dynamic viscosity of the fluid